Your browser doesn't support javascript.
loading
Bestrophin3 Deficiency in Vascular Smooth Muscle Cells Activates MEKK2/3-MAPK Signaling to Trigger Spontaneous Aortic Dissection.
Zhang, Ting-Ting; Lei, Qing-Qing; He, Jie; Guan, Xin; Zhang, Xin; Huang, Ying; Zhou, Zi-Yue; Fan, Rui-Xin; Wang, Ting; Li, Chen-Xi; Shang, Jin-Yan; Lin, Zhuo-Miao; Peng, Wan-Li; Xia, Li-Kai; He, Yu-Ling; Hong, Chuan-Ying; Ou, Jing-Song; Pang, Rui-Ping; Fan, Xiao-Ping; Huang, Hui; Zhou, Jia-Guo.
Affiliation
  • Zhang TT; Program of Cardiovascular Research, The Eighth Affiliated Hospital (T.-T.Z., H.H., J.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Lei QQ; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • He J; Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (T.-T.Z., Y.H., H.H.).
  • Guan X; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Zhang X; Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China (J.H., X.-P.F.).
  • Huang Y; Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (J.H.), NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
  • Zhou ZY; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Fan RX; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Wang T; Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China (T.-T.Z., Y.H., H.H.).
  • Li CX; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Shang JY; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (R.-X.F., C.-X.L.).
  • Lin ZM; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Peng WL; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (R.-X.F., C.-X.L.).
  • Xia LK; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • He YL; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Hong CY; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Ou JS; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Pang RP; Department of Pharmacology, Cardiac and Cerebrovascular Research Center (T.-T.Z., Q.-Q.L., X.G., X.Z., Z.-Y.Z., T.W., J.-Y.S., Z.-M.L., W.-L.P., L.-K.X., Y.-L.H., Z.-G.Z.), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Fan XP; Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (C.-Y.H., R.-P.P.).
  • Huang H; Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases (J.-S.O.) NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
  • Zhou JG; Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China (C.-Y.H., R.-P.P.).
Circulation ; 148(7): 589-606, 2023 08 15.
Article in En | MEDLINE | ID: mdl-37203562
BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aortic Dissection / Muscle, Smooth, Vascular Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Circulation Year: 2023 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aortic Dissection / Muscle, Smooth, Vascular Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Circulation Year: 2023 Document type: Article Affiliation country: Country of publication: