Your browser doesn't support javascript.
loading
Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection.
Shang, Qian-Nan; Yu, Xing-Xing; Xu, Zheng-Li; Chen, Yu-Hong; Han, Ting-Ting; Zhang, Yuan-Yuan; Lv, Meng; Sun, Yu-Qian; Wang, Yu; Xu, Lan-Ping; Zhang, Xiao-Hui; Zhao, Xiang-Yu; Huang, Xiao-Jun.
Affiliation
  • Shang QN; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Yu XX; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  • Xu ZL; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Chen YH; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
  • Han TT; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Zhang YY; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Lv M; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Sun YQ; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Wang Y; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Xu LP; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Zhang XH; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Zhao XY; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
  • Huang XJ; Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
Cell Mol Immunol ; 20(8): 895-907, 2023 08.
Article in En | MEDLINE | ID: mdl-37291236
ABSTRACT
Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32-0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18-0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cytomegalovirus Infections / Hematopoietic Stem Cell Transplantation Limits: Animals / Humans Language: En Journal: Cell Mol Immunol Journal subject: ALERGIA E IMUNOLOGIA Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cytomegalovirus Infections / Hematopoietic Stem Cell Transplantation Limits: Animals / Humans Language: En Journal: Cell Mol Immunol Journal subject: ALERGIA E IMUNOLOGIA Year: 2023 Document type: Article Affiliation country: