Your browser doesn't support javascript.
loading
IbInvInh2, a novel invertase inhibitor in sweet potato, regulates starch content through post-translational regulation of vacuolar invertase IbßFRUCT2.
Wu, Xuli; Wu, Zhengdan; Ju, Xisan; Fan, Yonghai; Yang, Chaobin; Han, Yonghui; Chen, Wanxia; Tang, Daobin; Lv, Changwen; Cao, Qinghe; Wang, Jichun; Zhang, Kai.
Affiliation
  • Wu X; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China.
  • Wu Z; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
  • Ju X; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China.
  • Fan Y; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
  • Yang C; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China.
  • Han Y; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China.
  • Chen W; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China.
  • Tang D; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southw
  • Lv C; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southw
  • Cao Q; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, China.
  • Wang J; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southw
  • Zhang K; College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southw
Plant Physiol Biochem ; 201: 107815, 2023 Aug.
Article in En | MEDLINE | ID: mdl-37301188
ABSTRACT
As a key enzyme in the starch and sugar metabolic pathways in sweet potato (Ipomoea batatas (L.) Lam.), the vacuolar invertase (EC 3.2.1.26) IbßFRUCT2 is involved in partitioning and modulating the starch and sugar components of the storage root. However, the post-translational regulation of its invertase activity remains unclear. In this study, we identified three invertase inhibitors, IbInvInh1, IbInvInh2, and IbInvInh3, as potential interaction partners of IbßFRUCT2. All were found to act as vacuolar invertase inhibitors (VIFs) and belonged to the plant invertase/pectin methyl esterase inhibitor superfamily. Among the three VIFs, IbInvInh2 is a novel VIF in sweet potato and was confirmed to be an inhibitor of IbßFRUCT2. The N-terminal domain of IbßFRUCT2 and the Thr39 and Leu198 sites of IbInvInh2 were predicted to be engaged in their interactions. The transgenic expression of IbInvInh2 in Arabidopsis thaliana plants reduced the starch content of leaves, while its expression in the Ibßfruct2-expressing Arabidopsis plants increased the starch content of leaves, suggesting that the post-translational inhibition of IbßFRUCT2 activity by IbInvInh2 contributes to the regulation of the plant starch content. Taken together, our findings reveal a novel VIF in sweet potato and provide insights into the potential regulatory roles of the VIFs and invertase-VIF interaction in starch metabolism. These insights lay the foundation for using VIFs to improve the starch properties of crops.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Starch / Ipomoea batatas Type of study: Prognostic_studies Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Starch / Ipomoea batatas Type of study: Prognostic_studies Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2023 Document type: Article Affiliation country: