Your browser doesn't support javascript.
loading
Molecular characterization and modulated expression of histone acetyltransferases during cold response of the tick Dermacentor silvarum (Acari: Ixodidae).
Pei, Tingwei; Zhang, Tianai; Zhang, Miao; Nwanade, Chuks F; Wang, Ruotong; Wang, Zihao; Bai, Ruwei; Yu, Zhijun; Liu, Jingze.
Affiliation
  • Pei T; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Zhang T; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Zhang M; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Nwanade CF; Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, USA.
  • Wang R; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Wang Z; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Bai R; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Yu Z; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
  • Liu J; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, H
Parasit Vectors ; 16(1): 358, 2023 Oct 10.
Article in En | MEDLINE | ID: mdl-37817288
BACKGROUND: Histone acetylation is involved in the regulation of stress responses in multiple organisms. Dermacentor silvarum is an important vector tick species widely distributed in China, and low temperature is a crucial factor restricting the development of its population. However, knowledge of the histone acetyltransferases and epigenetic mechanisms underlying cold-stress responses in this tick species is limited. METHODS: Histone acetyltransferase genes were characterized in D. silvarum, and their relative expressions were determined using qPCR during cold stress. The association and modulation of histone acetyltransferase genes were further explored using RNA interference, and both the H3K9 acetylation level and relative expression of KAT5 protein were evaluated using western blotting. RESULTS: Three histone acetyltransferase genes were identified and named as DsCREBBP, DsKAT6B, and DsKAT5. Bioinformatics analysis showed that they were unstable hydrophilic proteins, characterized by the conserved structures of CBP (ZnF_TAZ), PHA03247 super family, Creb_binding, and MYST(PLN00104) super family. Fluorescence quantitative PCR showed that the expression of DsCREBBP, DsKAT6B, and DsKAT5 increased after 3 days of cold treatment, with subsequent gradual decreases, and was lowest on day 9. Western blotting showed that both the H3K9 acetylation level and relative expression of KAT5 in D. silvarum increased after treatment at - 4, 4, and 8 °C for 3 and 6 days, whereas they decreased significantly after a 9-day treatment. RNA interference induced significant gene silencing, and the mortality rate of D. silvarum significantly increased at the respective semi-lethal temperatures. CONCLUSION: These results imply that histone acetyltransferases play an important role in tick adaptation to low temperatures and lay a foundation for further understanding of the epigenetic regulation of histone acetylation in cold-stressed ticks. Further research is needed to elucidate the mechanisms underlying histone acetylation during cold stress in ticks.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ixodidae / Dermacentor Type of study: Prognostic_studies Limits: Animals Language: En Journal: Parasit Vectors Year: 2023 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ixodidae / Dermacentor Type of study: Prognostic_studies Limits: Animals Language: En Journal: Parasit Vectors Year: 2023 Document type: Article Country of publication: