Your browser doesn't support javascript.
loading
MALDI-IM-MS Imaging of Brain Sterols and Lipids in a Mouse Model of Smith-Lemli-Opitz Syndrome.
Li, Amy; Xu, Libin.
Affiliation
  • Li A; Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195.
  • Xu L; Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195.
bioRxiv ; 2023 Oct 02.
Article in En | MEDLINE | ID: mdl-37873113
ABSTRACT
Smith-Lemli-Opitz syndrome (SLOS) is a neurodevelopmental disorder caused by genetic mutations in the DHCR7 gene, encoding the enzyme 3ß-hydroxysterol-Δ7-reductase (DHCR7) that catalyzes the last step of cholesterol synthesis. The resulting deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC), have a profound impact on brain development, which manifests as developmental delay, cognitive impairment, and behavioral deficits. To understand how the brain regions are differentially affected by the defective Dhcr7, we aim to map the regional distribution of sterols and other lipids in neonatal brains from a Dhcr7-KO mouse model of SLOS, using mass spectrometry imaging (MSI). MSI enables spatial localization of biomolecules in situ on the surface of a tissue section, which is particularly useful for mapping the changes that occur within a metabolic disorder such as SLOS, and in an anatomically complex organ such as the brain. In this work, using MALDI-ion mobility (IM)-MSI, we successfully determined the regional distribution of features that correspond to cholesterol, 7-DHC/desmosterol, and the precursor of desmosterol, 7-dehydrodesmosterol, in WT and Dhcr7-KO mice. Interestingly, we also observed m/z values that match the major oxysterol metabolites of 7-DHC (DHCEO and hydroxy-7-DHC), which displayed similar patterns as 7-DHC. We then identified brain lipids using m/z and CCS at the Lipid Species-level and curated a database of MALDIIM-MS-derived lipid CCS values. Subsequent statistical analysis of regions-of-interest allowed us to identify differentially expressed lipids between Dhcr7-KO and WT brains, which could contribute to defects in myelination, neurogenesis, neuroinflammation, and learning and memory in SLOS.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2023 Document type: Article