Your browser doesn't support javascript.
loading
Increased Interhemispheric Connectivity of a Distinct Type of Hippocampal Pyramidal Cells.
Stevens, Nikolas Andreas; Lankisch, Katja; Draguhn, Andreas; Engelhardt, Maren; Both, Martin; Thome, Christian.
Affiliation
  • Stevens NA; Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.
  • Lankisch K; Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.
  • Draguhn A; Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.
  • Engelhardt M; Institute of Anatomy and Cell Biology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria.
  • Both M; Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.
  • Thome C; Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany christian.thome@jku.at.
J Neurosci ; 44(7)2024 Feb 14.
Article in En | MEDLINE | ID: mdl-38123997
ABSTRACT
Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyramidal Cells / Hippocampus Limits: Animals Language: En Journal: J Neurosci Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyramidal Cells / Hippocampus Limits: Animals Language: En Journal: J Neurosci Year: 2024 Document type: Article Affiliation country: Country of publication: