Characteristics of CXE family of Salvia miltiorrhiza and identification of interactions between SmGID1s and SmDELLAs.
Plant Physiol Biochem
; 206: 108140, 2024 Jan.
Article
in En
| MEDLINE
| ID: mdl-38134738
ABSTRACT
Carboxylesterase (CXE) is a class of hydrolases that contain an α/ß folding domain, which plays critical roles in plant growth, development, and stress responses. Based on the genomic and transcriptomic data of Salvia miltiorrhiza, the SmCXE family was systematically analyzed using bioinformatics. The results revealed 34 SmCXE family members in S. miltiorrhiza, and the SmCXE family could be divided into five groups (Group I, Group II, Group III, Group IV, and Group V). Cis-regulatory elements indicated that the SmCXE promoter region contained tissue-specific and development-related, hormone-related, stress-related, and photoresponsive elements. Transcriptome analysis revealed that the expression levels of SmCXE2 were highest in roots and flowers (SmCXE8 was highest in stems and SmCXE19 was highest in leaves). Further, two GA receptors SmCXE1 (SmGID1A) and SmCXE2 (SmGID1B) were isolated from the SmCXE family, which are homologous to other plants. SmGID1A and SmGID1B have conserved HGGSF motifs and active amino acid sites (Ser-Asp-Val/IIe), which are required to maintain their GA-binding activities. SmGID1A and SmGID1B were significantly responsive to gibberellic acid (GA3) and methyl jasmonate (MeJA) treatment. A subcellular assay revealed that SmCXE1 and SmCXE2 resided within the nucleus. SmGID1B can interact with SmDELLAs regardless of whether GA3 exists, whereas SmGID1A can only interact with SmDELLAs in the presence of GA3. A Further assay showed that the GRAS domain mediated the interactions between SmGID1s and SmDELLAs. This study lays a foundation for further elucidating the role of SmCXE in the growth and development of S. miltiorrhiza.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Salvia miltiorrhiza
Language:
En
Journal:
Plant Physiol Biochem
Journal subject:
BIOQUIMICA
/
BOTANICA
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: