Your browser doesn't support javascript.
loading
Cellulose beads supported CoFe2O4: A novel heterogeneous catalyst for efficient rhodamine B degradation via advanced oxidation processes.
El Allaoui, Brahim; Benzeid, Hanane; Zari, Nadia; Qaiss, Abou El Kacem; Bouhfid, Rachid.
Affiliation
  • El Allaoui B; Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco; Mohammed VI Pol
  • Benzeid H; Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco.
  • Zari N; Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
  • Qaiss AEK; Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
  • Bouhfid R; Moroccan Foundation of Advanced Science Innovation and Research MAScIR, Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco. Electronic address: r.bouhfid@mascir.com.
Int J Biol Macromol ; 259(Pt 1): 128893, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38159693
ABSTRACT
In this study, a novel mechanical process was used to produce cellulose beads (CB). These beads were then doped with cobalt ferrite nanoparticles (CoFe2O4 NPs) to serve as catalysts for the degradation of rhodamine B (RhB) through peroxymonosulfate (PMS) activation. The physical and chemical properties of CoFe2O4 and CoFe2O4@CB catalysts were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) combined with energy dispersive X-ray spectrometer (EDX), scanning transmission electron microscopy (STEM) techniques, and thermogravimetric analysis (TGA). To optimize RhB degradation efficiency, Response Surface Methodology (RSM) was employed, utilizing the Box-Behnken design (BBD). Under the optimized conditions of a catalyst dosage of 0.40 g/L, PMS dosage of 0.98 mM, RhB concentration of 40 mg/L, pH of 5.27, and reaction time of 60 min, a remarkable degradation efficiency of 98.51 % was achieved at a temperature of 25 °C. In quenching experiments, 1O2, SO4•-, and HO• species are produced in the CoFe2O4@CB/PMS system, with 1O2, and SO4•- species dominating RhB degradation. Remarkably, the new CoFe2O4@CB catalyst has demonstrated exceptional stability and reusability, validated by recycling tests (up to 78 % of RhB degradation efficiency after a 5-cycle experiment) and subsequent characterizations (FTIR, SEM, and EDX) emphasizing unchanged bands, uniform distribution, and consistent composition after reuse cycles. These results demonstrate the effectiveness of mechanically produced CoFe2O4@CB catalysts for advanced oxidation processes (AOPs), with promising applications in wastewater treatment.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxides / Cellulose / Nanoparticles Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxides / Cellulose / Nanoparticles Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article
...