Your browser doesn't support javascript.
loading
A Novel Conductive Polypyrrole-Chitosan Hydrogel Containing Human Endometrial Mesenchymal Stem Cell-Derived Exosomes Facilitated Sustained Release for Cardiac Repair.
Yan, Changping; Wang, Xinzhu; Wang, Qi; Li, Haiyan; Song, Huifang; Zhou, Jingli; Peng, Zexu; Yin, Wenjuan; Fan, Xuemei; Yang, Kun; Zhou, Bingrui; Liang, Yuxiang; Jiang, Zengyu; Shi, Yuwei; Zhang, Sanyuan; He, Sheng; Li, Ren-Ke; Xie, Jun.
Affiliation
  • Yan C; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Wang X; Department of Gynecology, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, 030013, China.
  • Wang Q; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Li H; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Song H; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Zhou J; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Peng Z; Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, China.
  • Yin W; Shanxi Provincial People's Hospital, Affiliated Hospital of Shanxi Medical University, Taiyuan, 030012, China.
  • Fan X; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Yang K; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Zhou B; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Liang Y; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Jiang Z; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Shi Y; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Zhang S; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • He S; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
  • Li RK; NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
  • Xie J; The First Hospital of Shanxi Medical University, Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
Adv Healthc Mater ; 13(10): e2304207, 2024 04.
Article in En | MEDLINE | ID: mdl-38175149
ABSTRACT
Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chitosan / Exosomes / Mesenchymal Stem Cells / Myocardial Infarction Limits: Humans Language: En Journal: Adv Healthc Mater Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chitosan / Exosomes / Mesenchymal Stem Cells / Myocardial Infarction Limits: Humans Language: En Journal: Adv Healthc Mater Year: 2024 Document type: Article Affiliation country: Country of publication: