Your browser doesn't support javascript.
loading
Skin Anti-Inflammatory Potential with Reduced Side Effects of Novel Glucocorticoid Receptor Agonists.
Flori, Enrica; Mosca, Sarah; Kovacs, Daniela; Briganti, Stefania; Ottaviani, Monica; Mastrofrancesco, Arianna; Truglio, Mauro; Picardo, Mauro.
Affiliation
  • Flori E; Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Mosca S; Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Kovacs D; Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Briganti S; Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Ottaviani M; Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Mastrofrancesco A; Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Truglio M; Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy.
  • Picardo M; Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in En | MEDLINE | ID: mdl-38203435
ABSTRACT
Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Glucocorticoid / Dermatitis Type of study: Etiology_studies Limits: Humans Language: En Journal: Int J Mol Sci Year: 2023 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Receptors, Glucocorticoid / Dermatitis Type of study: Etiology_studies Limits: Humans Language: En Journal: Int J Mol Sci Year: 2023 Document type: Article Affiliation country: Country of publication: