Your browser doesn't support javascript.
loading
Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex.
Xu, Chen; Zhang, Ge; Wang, Xinjian; Huang, Xiaozhi; Zhang, Jiayin; Han, Shuxian; Wang, Jinxi; Hall, Duane D; Xu, Ruoqing; He, Feng; Chang, Xing; Wang, Fudi; Xie, Wenjun; Wu, Zhichao; Song, Long-Sheng; Han, Peidong.
Affiliation
  • Xu C; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
  • Zhang G; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Wang X; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Huang X; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
  • Zhang J; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Han S; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Wang J; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
  • Hall DD; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Xu R; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • He F; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
  • Chang X; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Wang F; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Xie W; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
  • Wu Z; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Song LS; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.).
  • Han P; Center for Genetic Medicine, The Fourth Affiliated Hospital (C.X., G.Z., X.W., X.H., J.Z., S.H., R.X., F.H., P.H.), Zhejiang University School of Medicine, Hangzhou, China.
Circulation ; 149(17): 1375-1390, 2024 Apr 23.
Article in En | MEDLINE | ID: mdl-38214189
ABSTRACT

BACKGROUND:

Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear.

METHODS:

Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis.

RESULTS:

The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes.

CONCLUSIONS:

Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Circulation Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Circulation Year: 2024 Document type: Article Affiliation country: Country of publication: