Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low-Strain and Fast-Charging Anode for Lithium-Ion Batteries.
Nanomicro Lett
; 16(1): 98, 2024 Jan 29.
Article
in En
| MEDLINE
| ID: mdl-38285246
ABSTRACT
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries. Herein, we report a unique silicon-carbon composite fabricated by uniformly dispersing amorphous Si nanodots (SiNDs) in carbon nanospheres (SiNDs/C) that are welded on the wall of the macroporous carbon framework (MPCF) by vertical graphene (VG), labeled as MPCF@VG@SiNDs/C. The high dispersity and amorphous features of ultrasmall SiNDs (~ 0.7 nm), the flexible and directed electron/Li+ transport channels of VG, and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites, rapid Li+ transport path, and unique low-strain property during Li+ storage. Consequently, the MPCF@VG@SiNDs/C exhibits high cycle stability (1301.4 mAh g-1 at 1 A g-1 after 1000 cycles without apparent decay) and high rate capacity (910.3 mAh g-1, 20 A g-1) in half cells based on industrial electrode standards. The assembled pouch full cell delivers a high energy density (1694.0 Wh L-1; 602.8 Wh kg-1) and an excellent fast-charging capability (498.5 Wh kg-1, charging for 16.8 min at 3 C). This study opens new possibilities for preparing advanced silicon-carbon composite anodes for practical applications.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Guideline
Language:
En
Journal:
Nanomicro Lett
Year:
2024
Document type:
Article
Country of publication: