Your browser doesn't support javascript.
loading
A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life.
Vedovato, Natascia; Salguero, Maria V; Greeley, Siri Atma W; Yu, Christine H; Philipson, Louis H; Ashcroft, Frances M.
Affiliation
  • Vedovato N; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
  • Salguero MV; Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
  • Greeley SAW; Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
  • Yu CH; Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA.
  • Philipson LH; Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
  • Ashcroft FM; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK. frances.ashcroft@dpag.ox.ac.uk.
Diabetologia ; 67(5): 940-951, 2024 May.
Article in En | MEDLINE | ID: mdl-38366195
ABSTRACT
AIMS/

HYPOTHESIS:

The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life.

METHODS:

A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays.

RESULTS:

Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/

INTERPRETATION:

Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Diabetes, Gestational / Potassium Channels, Inwardly Rectifying / Congenital Hyperinsulinism Limits: Adult / Female / Humans / Middle aged / Newborn / Pregnancy Language: En Journal: Diabetologia Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Diabetes, Gestational / Potassium Channels, Inwardly Rectifying / Congenital Hyperinsulinism Limits: Adult / Female / Humans / Middle aged / Newborn / Pregnancy Language: En Journal: Diabetologia Year: 2024 Document type: Article Affiliation country:
...