Your browser doesn't support javascript.
loading
Comprehensive exploration of the anaerobic biotransformation of polychlorinated biphenyls in Dehalococcoides mccartyi CG1: Kinetics, enantioselectivity, and isotope fractionation.
Huang, Chenchen; Zeng, Yanhong; Jiang, Yiye; Zhang, Yanting; Lu, Qihong; Liu, Yin-E; Guo, Jian; Wang, Shanquan; Luo, Xiaojun; Mai, Bixian.
Affiliation
  • Huang C; China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Ge
  • Zeng Y; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollutio
  • Jiang Y; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollutio
  • Zhang Y; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollutio
  • Lu Q; School of Environmental Science and Engineering, Sun Yat-sen University, China.
  • Liu YE; China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Ge
  • Guo J; Guangdong University of Petrochemical Technology, Maoming 525000, China.
  • Wang S; School of Environmental Science and Engineering, Sun Yat-sen University, China.
  • Luo X; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollutio
  • Mai B; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollutio
Environ Pollut ; 346: 123650, 2024 Apr 01.
Article in En | MEDLINE | ID: mdl-38402932
ABSTRACT
Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85 -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132 -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174 -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polychlorinated Biphenyls / Chloroflexi Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polychlorinated Biphenyls / Chloroflexi Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article