Your browser doesn't support javascript.
loading
Black Phosphorus-Based Reusable Biosensor Platforms for the Ultrasensitive Detection of Cortisol in Saliva.
Lee, Sang-Eun; Choi, Yoonji; Oh, Yuhyeon; Lee, Dongryul; Kim, Jihyun; Hong, Seunghun.
Affiliation
  • Lee SE; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
  • Choi Y; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
  • Oh Y; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
  • Lee D; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Kim J; Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.
  • Hong S; Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
ACS Appl Mater Interfaces ; 16(9): 11305-11314, 2024 Mar 06.
Article in En | MEDLINE | ID: mdl-38406866
ABSTRACT
A black phosphorus (BP)-based reusable biosensor platform is developed for the repeated and real-time detection of cortisol using antibody-conjugated magnetic particle (MP) structures as a refreshable receptor. Here, we took advantage of the low-noise characteristics of a mechanically exfoliated BP-based field-effect transistor (FET) and hybridized it with anti-cortisol antibody-functionalized MPs to build a highly sensitive cortisol sensor. This strategy allowed us to detect cortisol down to 1 aM in real time and discriminate cortisol from other hormones. In this case, we could easily remove MPs with used antibodies from the surface of a BP-FET and reuse the chip for up to eight repeated sensing operations. Moreover, since our platform could be fabricated using conventional photolithography techniques and the sensor can be reused multiple times, one should be able to significantly reduce operation costs for practical applications. Furthermore, this method could be utilized to detect different hormones with high sensitivity and selectivity in complex environments such as artificial saliva solutions. In this respect, our reusable BP-FET biosensing platform can be a powerful tool for versatile applications such as clinical diagnosis and basic biological analysis by conjugating various antibodies.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrocortisone / Biosensing Techniques Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrocortisone / Biosensing Techniques Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication: