Your browser doesn't support javascript.
loading
Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing.
Yang, Yutong; Wang, Jiaxin; Huang, Shengfei; Li, Meng; Chen, Jueying; Pei, Dandan; Tang, Zhen; Guo, Baolin.
Affiliation
  • Yang Y; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Wang J; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Huang S; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Li M; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Chen J; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Pei D; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
  • Tang Z; Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
  • Guo B; State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
Natl Sci Rev ; 11(4): nwae044, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38440214
ABSTRACT
There is still an urgent need to develop hydrogels with intelligent antibacterial ability to achieve on-demand treatment of infected wounds and accelerate wound healing by improving the regeneration microenvironment. We proposed a strategy of hydrogel wound dressing with bacteria-responsive self-activating antibacterial property and multiple nanozyme activities to remodel the regeneration microenvironment in order to significantly promote infected wound healing. Specifically, pH-responsive H2O2 self-supplying composite nanozyme (MSCO) and pH/enzyme-sensitive bacteria-responsive triblock micelles encapsulated with lactate oxidase (PPEL) were prepared and encapsulated in hydrogels composed of L-arginine-modified chitosan (CA) and phenylboronic acid-modified oxidized dextran (ODP) to form a cascade bacteria-responsive self-activating antibacterial composite hydrogel platform. The hydrogels respond to multifactorial changes of the bacterial metabolic microenvironment to achieve on-demand antibacterial and biofilm eradication through transformation of bacterial metabolites, and chemodynamic therapy enhanced by nanozyme activity in conjunction with self-driven nitric oxide (NO) release. The composite hydrogel showed 'self-diagnostic' treatment for changes in the wound microenvironment. Through self-activating antibacterial therapy in the infection stage to self-adaptive oxidative stress relief and angiogenesis in the post-infection stage, it promotes wound closure, accelerates wound collagen deposition and angiogenesis, and completely improves the microenvironment of infected wound regeneration, which provides a new method for the design of intelligent wound dressings.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Natl Sci Rev Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Natl Sci Rev Year: 2024 Document type: Article Affiliation country: Country of publication: