Your browser doesn't support javascript.
loading
Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient.
King, Matthew R; Ruff, Kiersten M; Lin, Andrew Z; Pant, Avnika; Farag, Mina; Lalmansingh, Jared M; Wu, Tingting; Fossat, Martin J; Ouyang, Wei; Lew, Matthew D; Lundberg, Emma; Vahey, Michael D; Pappu, Rohit V.
Affiliation
  • King MR; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Ruff KM; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Lin AZ; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Pant A; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Farag M; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Lalmansingh JM; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Wu T; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Fossat MJ; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Ouyang W; Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Roya
  • Lew MD; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Lundberg E; Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Roya
  • Vahey MD; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Pappu RV; Department of Biomedical Engineering, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA. Electronic address: pappu@wustl.edu.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Article in En | MEDLINE | ID: mdl-38503281
ABSTRACT
Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nuclear Proteins / Cell Nucleolus / Proton-Motive Force Limits: Animals Language: En Journal: Cell Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nuclear Proteins / Cell Nucleolus / Proton-Motive Force Limits: Animals Language: En Journal: Cell Year: 2024 Document type: Article Affiliation country: