Your browser doesn't support javascript.
loading
TPG-functionalized PLGA/PCL nanofiber membrane facilitates periodontal tissue regeneration by modulating macrophages polarization via suppressing PI3K/AKT and NF-κB signaling pathways.
Han, Xiang; Wang, Feiyang; Ma, Yuzhuo; Lv, Xuerong; Zhang, Kewei; Wang, Yue; Yan, Ke; Mei, Youmin; Wang, Xiaoqian.
Affiliation
  • Han X; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
  • Wang F; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China.
  • Ma Y; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China.
  • Lv X; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
  • Zhang K; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China.
  • Wang Y; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China.
  • Yan K; Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
  • Mei Y; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, People's Republic of China.
  • Wang X; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People's Republic of China.
Mater Today Bio ; 26: 101036, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38600919
ABSTRACT
Traditional fibrous membranes employed in guided tissue regeneration (GTR) in the treatment of periodontitis have limitations of bioactive and immunomodulatory properties. We fabricated a novel nTPG/PLGA/PCL fibrous membrane by electrospinning which exhibit excellent hydrophilicity, mechanical properties and biocompatibility. In addition, we investigated its regulatory effect on polarization of macrophages and facilitating the regeneration of periodontal tissue both in vivo and in vitro. These findings showed the 0.5%TPG/PLGA/PCL may inhibit the polarization of RAW 264.7 into M1 phenotype by suppressing the PI3K/AKT and NF-κB signaling pathways. Furthermore, it directly up-regulated the expression of cementoblastic differentiation markers (CEMP-1 and CAP) in periodontal ligament stem cells (hPDLSCs), and indirectly up-regulated the expression of cementoblastic (CEMP-1 and CAP) and osteoblastic (ALP, RUNX2, COL-1, and OCN) differentiation markers by inhibiting the polarization of M1 macrophage. Upon implantation into a periodontal bone defect rats model, histological assessment revealed that the 0.5%TPG/PLGA/PCL membrane could regenerate oriented collagen fibers and structurally intact epithelium. Micro-CT (BV/TV) and the expression of immunohistochemical markers (OCN, RUNX-2, COL-1, and BMP-2) ultimately exhibited satisfactory regeneration of alveolar bone, periodontal ligament. Overall, 0.5%TPG/PLGA/PCL did not only directly promote osteogenic effects on hPDLSCs, but also indirectly facilitated cementoblastic and osteogenic differentiation through its immunomodulatory effects on macrophages. These findings provide a novel perspective for the development of materials for periodontal tissue regeneration.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Mater Today Bio Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Mater Today Bio Year: 2024 Document type: Article Country of publication: