Your browser doesn't support javascript.
loading
Expressional Study of Permeability Glycoprotein and Multidrug Resistance Protein 1 in Drug-resistant Mesial Temporal Lobe Epilepsy.
Kaur, Mandeep; Gupta, Tulika; Gupta, Mili; Singla, Navneet; Kharbanda, Parampreet S; Bansal, Yogender Singh; Sahni, Daisy; Radotra, Bishan Das; Gupta, Sunil Kumar.
Affiliation
  • Kaur M; Department of Anatomy, Institute of Medical Education and Research, Chandigarh, India.
  • Gupta T; Department of Anatomy, Institute of Medical Education and Research, Chandigarh, India.
  • Gupta M; Department of Biochemistry, Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India.
  • Singla N; Department of Neurosurgery, Institute of Medical Education and Research, Chandigarh, India.
  • Kharbanda PS; Department of Neurology, Institute of Medical Education and Research, Chandigarh, India.
  • Bansal YS; Department of Forensic Medicine, Institute of Medical Education and Research, Chandigarh, India.
  • Sahni D; Department of Anatomy, Institute of Medical Education and Research, Chandigarh, India.
  • Radotra BD; Department of Histopathology, Institute of Medical Education and Research, Chandigarh, India.
  • Gupta SK; Department of Neurosurgery, Institute of Medical Education and Research, Chandigarh, India.
Basic Clin Neurosci ; 14(5): 615-630, 2023.
Article in En | MEDLINE | ID: mdl-38628830
ABSTRACT

Introduction:

About 30% of patients with epilepsy do not respond to anti-epileptic drugs, leading to refractory seizures. The pathogenesis of drug-resistance in mesial temporal lobe epilepsy (MTLE) is not completely understood. Increased activity of drug-efflux transporters might be involved, resulting in subclinical concentrations of the drug at the target site. The major drug-efflux transporters are permeability glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1). The major drawback so far is the expressional analysis of transporters in equal numbers of drug-resistant epileptic tissue and age-matched non-epileptic tissue.

Methods:

We have studied P-gp and MRP-1 drug-efflux transporters in the sclerotic hippocampal tissues resected from the epilepsy surgery patients (n=15) and compared their expression profile with the tissues resected from non-epileptic autopsy cases (n=15).

Results:

Statistically significant over expression of both P-gp (P<0.0001) and MRP-1 (P=0.01) at gene and protein levels were found in the MTLE cases. The fold change of P-gp was more pronounced than MRP-1. Immunohistochemistry of the patient group showed increased immunoreactivity of P-gp at blood-brain barrier and increased reactivity of MRP-1 in the parenchyma. The results were confirmed by confocal immunofluorescence microscopy.

Conclusion:

Our results suggested that P-gp in association with MRP-1 might be responsible for the multi-drug resistance in epilepsy. P-gp and MRP-1 could be important determinants of bio availability and tissue distribution of anti-epileptic drugs in the brain which can pharmacologically inhibited to achieve optimal drug penetration to target site.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Basic Clin Neurosci Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Basic Clin Neurosci Year: 2023 Document type: Article Affiliation country: