Your browser doesn't support javascript.
loading
Steroidal epoxides as anticancer agents in lung, prostate and breast cancers: The case of 1,2-epoxysteroids.
Gomes, Ana R; Tavares-da-Silva, Elisiário J; Costa, Saúl C; Varela, Carla L; Abrantes, Ana M; Gonçalves, Ana C; Alves, Raquel; Botelho, Maria F; Roleira, Fernanda M F; Pires, Ana S.
Affiliation
  • Gomes AR; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Faculty of Pharmacy,
  • Tavares-da-Silva EJ; Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal. Electronic address: etavares@ff.uc.pt.
  • Costa SC; Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal.
  • Varela CL; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, CERES, Department of Chemical Eng
  • Abrantes AM; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biome
  • Gonçalves AC; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncob
  • Alves R; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncob
  • Botelho MF; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biome
  • Roleira FMF; Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal.
  • Pires AS; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biome
Biochem Pharmacol ; 225: 116266, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38710333
ABSTRACT
Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Epoxy Compounds / Lung Neoplasms / Antineoplastic Agents Limits: Female / Humans / Male Language: En Journal: Biochem Pharmacol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Epoxy Compounds / Lung Neoplasms / Antineoplastic Agents Limits: Female / Humans / Male Language: En Journal: Biochem Pharmacol Year: 2024 Document type: Article
...