Your browser doesn't support javascript.
loading
Programmable, Self-Healable, and Photochromic Liquid Crystal Elastomers Based on Dynamic Hindered Urea Bonds for Biomimetic Flowers.
Xu, Zhentian; Zhu, Yangyang; Ai, Yun; Zhou, Dan; Wu, Feiyan; Li, Chunquan; Chen, Lie.
Affiliation
  • Xu Z; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
  • Zhu Y; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
  • Ai Y; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
  • Zhou D; Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China.
  • Wu F; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
  • Li C; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
  • Chen L; College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
Small ; : e2400520, 2024 May 11.
Article in En | MEDLINE | ID: mdl-38733234
ABSTRACT
Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Country of publication: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Country of publication: ALEMANHA / ALEMANIA / DE / DEUSTCHLAND / GERMANY