Your browser doesn't support javascript.
loading
A model-based sliding mode control with intelligent distribution for a proportional valve driven by digital valve arrays.
Gao, Qiang; Liu, Huayi; Lan, Bo; Zhu, Yong.
Affiliation
  • Gao Q; National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China; Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, Jiangsu, China; College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, N
  • Liu H; National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China.
  • Lan B; National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China.
  • Zhu Y; National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China.
ISA Trans ; 151: 312-323, 2024 Aug.
Article in En | MEDLINE | ID: mdl-38782638
ABSTRACT
Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ISA Trans / ISA Transactions Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ISA Trans / ISA Transactions Year: 2024 Document type: Article Country of publication: