Your browser doesn't support javascript.
loading
Development and validation of radiomics nomogram for metastatic status of epithelial ovarian cancer.
Leng, Yinping; Wang, Xiwen; Zheng, Tian; Peng, Fei; Xiong, Liangxia; Wang, Yu; Gong, Lianggeng.
Affiliation
  • Leng Y; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
  • Wang X; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
  • Zheng T; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
  • Peng F; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
  • Xiong L; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
  • Wang Y; Clinical and Technical Support, Philips Healthcare, Shanghai, 200072, Shanghai, China.
  • Gong L; Department of Radiology, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China. gong111999@126.com.
Sci Rep ; 14(1): 12456, 2024 05 30.
Article in En | MEDLINE | ID: mdl-38816463
ABSTRACT
To develop and validate an enhanced CT-based radiomics nomogram for evaluating preoperative metastasis risk of epithelial ovarian cancer (EOC). One hundred and nine patients with histologically confirmed EOC were retrospectively enrolled. The volume of interest (VOI) was delineated in preoperative enhanced CT images, and 851 radiomics features were extracted. The radiomics features were selected by the least absolute shrinkage and selection operator (LASSO), and the rad-score was calculated using the formula of the radiomics label. A clinical model, radiomics model, and combined model were constructed using the logistic regression classification algorithm. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the diagnostic performance of the models. Seventy-five patients (68.8%) were histologically confirmed to have metastasis. Eleven optimal radiomics features were retained by the LASSO algorithm to develop the radiomic model. The combined model for evaluating metastasis of EOC achieved area under the curve (AUC) values of 0.929 (95% CI 0.8593-0.9996) in the training cohort and 0.909 (95% CI 0.7921-1.0000) in the test cohort. To facilitate clinical use, a radiomic nomogram was built by combining the clinical characteristics with rad-score. The DCA indicated that the nomogram had the most significant net benefit when the threshold probability exceeded 15%, surpassing the benefits of both the treat-all and treat-none strategies. Compared with clinical model and radiomics model, the radiomics nomogram has the best diagnostic performance in evaluating EOC metastasis. The nomogram is a useful and convenient tool for clinical doctors to develop personalized treatment plans for EOC patients.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Neoplasms / Tomography, X-Ray Computed / Nomograms / Carcinoma, Ovarian Epithelial Limits: Adult / Aged / Female / Humans / Middle aged Language: En Journal: Sci Rep Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Neoplasms / Tomography, X-Ray Computed / Nomograms / Carcinoma, Ovarian Epithelial Limits: Adult / Aged / Female / Humans / Middle aged Language: En Journal: Sci Rep Year: 2024 Document type: Article Affiliation country: Country of publication: