Your browser doesn't support javascript.
loading
Cortical theta phase synchronization involved in mismatch-driven perceptual alternation in binocular rivalry.
Goto, Hirotsugu; Urakawa, Tomokazu; Maeda, Yuna; Kurita, Yuki; Araki, Osamu.
Affiliation
  • Goto H; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan. Electronic address: 1522703@ed.tus.ac.jp.
  • Urakawa T; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
  • Maeda Y; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
  • Kurita Y; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
  • Araki O; Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
Neurosci Lett ; 834: 137847, 2024 Jun 21.
Article in En | MEDLINE | ID: mdl-38821200
ABSTRACT
When two conflicting images are presented to each eye, a phenomenon called binocular rivalry occurs in which we initially perceive one image, and then our perception switches to the other over time. An enhancement of θ-band phase coherence in visual mismatch oscillatory response (vMOR) is reported to be involved in the facilitation of perceptual alternation when the deviant stimulus is presented unconsciously. In this study, we investigated the modulation effect of θ-band transcranial alternating current stimulation (tACS) on perceptual alternation in binocular rivalry, with a focus on its relationship with the θ-band vMOR. The results showed that tACS had no significant effect on the mean proportion of perceptual alternation. Analyzing the differential effects of the modulation, however, we found a positive correlation between the increase in inter-trial phase coherence of the vMOR and the promotion of perceptual alternation under the unconscious deviant condition. Additionally, our findings indicate that the θ-band phase synchrony between frontal and occipital electrode sides, as measured by the phase lag index, is implicated in perceptual alternation, with an increase (decrease) in connection density observed in participants whose perceptual alternation was increased (decreased) by tACS. These results support the hypothesis that deviant visual stimuli evoke θ-band phase synchrony between the frontal and occipital cortices, thereby enhancing perceptual alternation in binocular rivalry.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photic Stimulation / Theta Rhythm / Visual Perception / Vision, Binocular / Transcranial Direct Current Stimulation Limits: Adult / Female / Humans / Male Language: En Journal: Neurosci Lett Year: 2024 Document type: Article Publication country: IE / IRELAND / IRLANDA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photic Stimulation / Theta Rhythm / Visual Perception / Vision, Binocular / Transcranial Direct Current Stimulation Limits: Adult / Female / Humans / Male Language: En Journal: Neurosci Lett Year: 2024 Document type: Article Publication country: IE / IRELAND / IRLANDA