Your browser doesn't support javascript.
loading
Comparative Transcriptome Analysis of T. rubrum, T. mentagrophytes, and M. gypseum Dermatophyte Biofilms in Response to Photodynamic Therapy.
Chen, Borui; Zhang, Jinyan; Li, Juanjuan; Qian, Yuwen; Huang, Binbin; Wu, Xiaomo.
Affiliation
  • Chen B; Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
  • Zhang J; Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China.
  • Li J; Department of Dermatology, First Hospital and Research Center for Medical Mycology, Peking University, Beijing, 100034, China.
  • Qian Y; Department of Dermatology, Fujian Provincial Geriatric Hospital, Fuzhou, 350025, China.
  • Huang B; Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
  • Wu X; Fujun Genetics Technologies Company Limited, Fuzhou, 350003, China.
Mycopathologia ; 189(4): 59, 2024 Jun 18.
Article in En | MEDLINE | ID: mdl-38890181
ABSTRACT
Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photochemotherapy / Biofilms / Gene Expression Profiling / Arthrodermataceae Limits: Humans Language: En Journal: Mycopathologia Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Photochemotherapy / Biofilms / Gene Expression Profiling / Arthrodermataceae Limits: Humans Language: En Journal: Mycopathologia Year: 2024 Document type: Article Affiliation country: Country of publication: