Preoperative Contrast-Enhanced CT-Based Deep Learning Radiomics Model for Distinguishing Retroperitoneal Lipomas and WellDifferentiated Liposarcomas.
Acad Radiol
; 2024 Jul 12.
Article
in En
| MEDLINE
| ID: mdl-39003228
ABSTRACT
RATIONALE AND OBJECTIVES:
To assess the efficacy of a preoperative contrast-enhanced CT (CECT)-based deep learning radiomics nomogram (DLRN) for predicting murine double minute 2 (MDM2) gene amplification as a means of distinguishing between retroperitoneal well-differentiated liposarcomas (WDLPS) and lipomas.METHODS:
This retrospective multi-center study included 167 patients (training/external test cohort, 104/63) with MDM2-positive WDLPS or MDM2-negative lipomas. Clinical data and CECT features were independently measured and analyzed by two radiologists. A clinico-radiological model, radiomics signature (RS), deep learning and radiomics signature (DLRS), and a DLRN incorporating radiomics and deep learning features were developed to differentiate between WDLPS and lipoma. The model utility was evaluated based on the area under the receiver operating characteristic curve (AUC), accuracy, calibration curve, and decision curve analysis (DCA).RESULTS:
The DLRN showed good performance for distinguishing retroperitoneal lipomas and WDLPS in the training (AUC, 0.981; accuracy, 0.933) and external validation group (AUC, 0.861; accuracy, 0.810). The DeLong test revealed the DLRN was noticeably better than clinico-radiological and RS models (training 0.981 vs. 0.890 vs. 0.751; validation 0.861 vs. 0.724 vs. 0.700; both P < 0.05); however, no discernible difference in performance was seen between the DLRN and DLRS (training 0.981 vs. 0.969; validation 0.861 vs. 0.837; both P > 0.05). The calibration curve analysis and DCA demonstrated that the nomogram exhibited good calibration and offered substantial clinical advantages.CONCLUSION:
The DLRN exhibited strong predictive capability in predicting WDLPS and retroperitoneal lipomas preoperatively, making it a promising imaging biomarker that can facilitate personalized management and precision medicine.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Acad Radiol
Journal subject:
RADIOLOGIA
Year:
2024
Document type:
Article
Country of publication: