Your browser doesn't support javascript.
loading
Characterization of atmospheric nitroaromatic compounds in Southwest China by direct injection liquid chromatography-tandem mass spectrometry analysis of aerosol extracts.
Tao, Hongli; Tang, Tian; Wang, Huanbo; Huo, Tingting; Yang, Hao; Zhou, Yan.
Affiliation
  • Tao H; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
  • Tang T; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
  • Wang H; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address: hbwang@swust.edu.cn.
  • Huo T; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
  • Yang H; School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
  • Zhou Y; Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. Electronic address: skyzy1208@163.com.
Chemosphere ; 363: 142845, 2024 Sep.
Article in En | MEDLINE | ID: mdl-39004144
ABSTRACT
Nitroaromatic compounds (NACs) in ambient particles are of great concern due to their adverse effects on human health and climate. However, investigations on the characteristics and potential sources of NACs in Southwest China are still scarce. In this study, a field sampling campaign was carried out in the winter of 2022 at a suburban site in Mianyang, Southwest China. A direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to rapidly determine 10 NACs in fine particulate matter (PM2.5) extracts. The method was sensitive for the quantification of the NACs, with a limit of quantification (LOQ) in the range of 0.092-0.52 ng mL-1. Then, the developed method was applied to determine the concentrations of nitrophenols (NPs), nitrocatechols (NCs), nitrosalicylic acids (NSAs), and nitronaphthol in PM2.5 in Mianyang. The average concentration of total NACs was 78.2 ± 31.2 ng m-3, with daily concentrations ranging from 20.7 to 127.9 ng m-3. Among the measured NACs, 4-nitrocatechol was the most abundant, accounting for 57.8% of the NACs in winter. The five NPs compounds together contributed to 14% of the NACs, which was lower than in other Chinese cities due to the warm climate in winter in Southwest China. NSAs and nitronaphthol each accounted for less than 5% of the NACs. Three major sources of NACs were identified based on the principal component analysis, including vehicle emissions, biomass burning, and secondary formation. The significant correlation between individual NACs and NO2 supported their secondary formation sources. The good correlation between NPs and cloud amount further suggested that gas-phase oxidation was the possible NPs formation mechanism. Our findings revealed the important role of nitrocatechols in NACs in Southwest China, implying that more measures should be taken to control biomass burning and aromatic volatile organic compounds emissions to reduce the level of NACs.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Environmental Monitoring / Aerosols / Air Pollutants / Particulate Matter / Tandem Mass Spectrometry Country/Region as subject: Asia Language: En Journal: Chemosphere Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Environmental Monitoring / Aerosols / Air Pollutants / Particulate Matter / Tandem Mass Spectrometry Country/Region as subject: Asia Language: En Journal: Chemosphere Year: 2024 Document type: Article Affiliation country: Country of publication: