Rhopaloic acid A triggers mitochondria damage-induced apoptosis in oral cancer by JNK/BNIP3/Nix-mediated mitophagy.
Phytomedicine
; 132: 155855, 2024 Sep.
Article
in En
| MEDLINE
| ID: mdl-39043083
ABSTRACT
BACKGROUND:
Oral squamous cell carcinoma (OSCC) is a frequently occurring type of head and neck cancer with a high mortality and morbidity rate. Rhopaloic acid A (RA), a terpenoid derived from sponges, has demonstrated a promising anti-tumor activity, but its effectiveness for treating OSCC remains unknown.PURPOSE:
The aim of this study was to investigate whether RA inhibits the growth of OSCC.METHODS:
Cell viability was evaluated using CCK-8 assays in OSCC cells (Ca9-22, HSC-3 and SAS) and in normal cells (HGF-1) treated with RA. DAPI staining, AO staining, JC-1 staining and immunofluorescence were used to determine apoptosis, mitochondrial membrane potential and autophagy in RA-treated OSCC cells. Protein expression levels were determined by western blotting. Furthermore, the anti-tumor effect of RA was confirmed in vivo using a zebrafish oral cancer xenotransplantation model.RESULTS:
OSCC cells had a significantly reduced viability after RA treatment, but normal cells were not affected. Treatment with RA caused chromatin condensation in OSCC cells, which increased their expression of autophagy- and apoptosis-related proteins. Furthermore, RA caused mitochondrial damage and increased autophagosome formation. Mitophagy was also induced by RA through the JNK/BNIP3/Nix/LC3B pathway. The JNK inhibitor SP600125 prevented both RA-mediated cell death and mitophagy of OSCC cells. A zebrafish xenograft model demonstrated that RA inhibits OSCC growth.CONCLUSION:
In conclusion, RA showed a potent anticancer activity in in vitro and in in vivo oral cancer models by promoting mitochondrial damage-induced apoptosis and mitophagy, which suggests that RA may be useful as a novel and effective treatment for OSCC.Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Zebrafish
/
Mouth Neoplasms
/
Carcinoma, Squamous Cell
/
Apoptosis
/
Mitophagy
/
Mitochondria
Limits:
Animals
/
Humans
Language:
En
Journal:
Phytomedicine
Journal subject:
TERAPIAS COMPLEMENTARES
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: