Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries (Vaccinium spp.).
Plants (Basel)
; 13(14)2024 Jul 11.
Article
in En
| MEDLINE
| ID: mdl-39065438
ABSTRACT
In China, the Liaodong Peninsula is an important growing area for blueberries because of the high organic matter content in the soil, the abundance of light, and the large temperature difference between day and night. However, the low temperature and relative humidity of the air during the winter and early spring in the Liaodong Peninsula are the main reasons for the damage to blueberry plants. Here, we documented the transcriptome and proteome dynamics in response to cold stress in three blueberry cultivars ('Northland', 'Bluecrop', and 'Berkeley'). Functional enrichment analysis indicated that many differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) were mainly involved in the pathways of protein processing in the endoplasmic reticulum, the glutathione metabolism pathway, and ribosomes. We identified 12,747 transcription factors (TFs) distributed in 20 families. Based on our findings, we speculated that cold tolerance development was caused by the expression of calcium-related genes (CDPKs and CMLs), glutathione proteins, and TFs (NAC, WRKY, and ERF). Our investigation found that three cultivars experienced cold damage when exposed to temperatures between -9 °C and -15 °C in the field. Therefore, the cold resistance of blueberries during overwintering should not only resist the influence of low temperatures but also complex environmental factors such as strong winds and low relative humidity in the air. The order of cold resistance strength in the three blueberry cultivars was 'Berkeley', 'Bluecrop', and 'Northland'. These results provide a comprehensive profile of the response to cold stress, which has the potential to be used as a selection marker for programs to improve cold tolerance in blueberries.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Plants (Basel)
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: