Your browser doesn't support javascript.
loading
Improving the Long-Term Stability of PbTe-Based Thermoelectric Modules: From Nanostructures to Packaged Module Architecture.
Sauerschnig, Philipp; Saitou, Noriyuki; Koshino, Masanori; Ishida, Takao; Yamamoto, Atsushi; Ohta, Michihiro.
Affiliation
  • Sauerschnig P; Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
  • Saitou N; Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan.
  • Koshino M; Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Tsukuba 305-8565, Japan.
  • Ishida T; Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
  • Yamamoto A; Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
  • Ohta M; Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
Article in En | MEDLINE | ID: mdl-39091187
ABSTRACT
Nanostructured lead telluride PbTe is among the best-performing thermoelectric materials, for both p- and n-types, for intermediate temperature applications. However, the fabrication of power-generating modules based on nanostructured PbTe still faces challenges related to the stability of the materials, especially nanoprecipitates, and the bonding of electric contacts. In this study, in situ high-temperature transmission electron microscopy observation confirmed the stability of nanoprecipitates in p-type Pb0.973Na0.02Ge0.007Te up to at least ∼786 K. Then, a new architecture for a packaged module was developed for improving durability, preventing unwanted interaction between thermoelectric materials and electrodes, and for reducing thermal stress-induced crack formation. Finite element method simulations of thermal stresses and power generation characteristics were utilized to optimize the new module architecture. Legs of nanostructured p-type Pb0.973Na0.02Ge0.007Te (maximum zT ∼ 2.2 at 795 K) and nanostructured n-type Pb0.98Ga0.02Te (maximum zT ∼ 1.5 at 748 K) were stacked with flexible Fe-foil diffusion barrier layers and Ag-foil-interconnecting electrodes forming stable interfaces between electrodes and PbTe in the packaged module. For the bare module, a maximum conversion efficiency of ∼6.8% was obtained for a temperature difference of ∼480 K. Only ∼3% reduction in output power and efficiency was found after long-term operation of the bare module for ∼740 h (∼31 days) at a hot-side temperature of ∼673 K, demonstrating good long-term stability.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: