Your browser doesn't support javascript.
loading
Water adsorption on ferroelectric PbTiO3 (0 0 1) surface: A density functional theory study.
Ali, Ijaz; Liu, Jian-An; Yin, Li-Chang; Wang, Lianzhou; Liu, Gang.
Affiliation
  • Ali I; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
  • Liu JA; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China.
  • Yin LC; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China. Electronic address
  • Wang L; Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
  • Liu G; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China. Electronic address
J Colloid Interface Sci ; 678(Pt B): 984-991, 2024 Sep 10.
Article in En | MEDLINE | ID: mdl-39270398
ABSTRACT
In this work, combining the density functional theory (DFT) calculations and the ab initio molecular dynamics (AIMD) simulations, the water adsorption behavior, including the molecular and the dissociative adsorption on the negatively polarized (0 0 1) surface of ferroelectric PbTiO3 was comprehensively studied. Our theoretical results show that the dissociative adsorption of water is more energetically favorable than the molecular adsorption on the pristine PbTiO3 (0 0 1) surface. It has been also found that introducing surface oxygen vacancies (OV) can enhance the thermodynamic stability of dissociative adsorption of water molecule. The AIMD simulations demonstrate that water molecule can spontaneously dissociate into hydrogen atoms (H) and hydroxyl groups (OH) on the pristine PbTiO3 (0 0 1) surface at room temperature. Moreover, the surface OV can effectively facilitate the dissociative adsorption of water molecules, leading to a high surface coverage of OH group, thus giving rise to a high reactivity for water splitting on defective PbTiO3 (0 0 1) surface with OV. Our results not only comprehensively understand the reason for the photocatalytic water oxidation activity of single domain PbTiO3, but also shed light on the development of high performance ferroelectric photocatalysts for water splitting.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: Country of publication: