Your browser doesn't support javascript.
loading
Effects of soot and plastic fibers on the performance of SCC.
Sadrmomtazi, Ali; Sadat Ekrami, Nasim.
Affiliation
  • Sadrmomtazi A; Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
  • Sadat Ekrami N; Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
Heliyon ; 10(17): e36745, 2024 Sep 15.
Article in En | MEDLINE | ID: mdl-39296178
ABSTRACT
Self-compacting concrete is regarded as one of the newest types of concrete due to its durability, efficiency, viscosity, stability, flowability, and resistance. Today, one of the most pressing environmental challenges is the disposal of solid waste, and one of the plastic materials discarded as waste after use is plastic packaging belts. These are made on the basis of polypropylene, as well as the factory Iron smelting mines are the main source of iron oxide waste production. Studies using recycled plastic fibers (30 mm × 0.3 mm) and waste iron oxide as cost-effective additives in self-compacting concrete (SCC) are presented. The effects on fresh and hardened properties were evaluated at various additive contents. Fresh and hardened properties of self-compacting concrete (SCC) were evaluated with and without fiber and iron oxide additives. Tests included workability (slump flow, funnel), strength (compressive, tensile), and durability (ultrasonic pulse speed, permeability). Experiments revealed that increasing the amount of recycled plastic fibers and waste iron oxide in self-compacting concrete (SCC) led to higher compressive and tensile strengths at both 7 and 28 days. These strength increases ranged from 2 to 9.68 MPa for compressive strength and 1.61-7.44 MPa for tensile strength, compared to the control specimen without additives.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Heliyon Year: 2024 Document type: Article Affiliation country: Country of publication: