This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling
Preprint
in En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-22282049
ABSTRACT
Altered myeloid inflammation and lymphopenia are hallmarks of severe infections, including with SARS-CoV-2. Here, we identified a gene program, defined by correlation with EN-RAGE (S100A12) gene expression, which was up-regulated in airway and blood myeloid cells from COVID-19 patients. The EN-RAGE program was expressed in 7 cohorts and observed in patients with both COVID-19 and acute respiratory distress syndrome (ARDS) from other causes. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGE+ myeloid cells express features consistent with suppressor cell functionality, with low HLA-DR and high PD-L1 surface expression and higher expression of T cell-suppressive genes. Sustained EN-RAGE signature expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell exhaustion markers, such as PD-1. IL-6 treatment of monocytes in vitro upregulated many of the severity-associated genes in the EN-RAGE gene program, along with potential mediators of T cell suppression, such as IL-10. Blockade of IL-6 signaling by tocilizumab in a placebo-controlled clinical trial led to a rapid normalization of ENRAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.
cc_no
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-MEDRXIV
Type of study:
Cohort_studies
/
Experimental_studies
/
Observational_studies
/
Prognostic_studies
/
Rct
Language:
En
Year:
2022
Document type:
Preprint