Your browser doesn't support javascript.
loading
Development of a focused library of triazole-linked privileged-structure-based conjugates leading to the discovery of novel phenotypic hits against protozoan parasitic infections
Uliassi, Elisa; Piazzi, Lorna; Mazzanti, Andrea; Kaiser, Marcel; Brun, Reto; Moraes, Carolina Borsoi; Freitas-Junior, Lucio Holanda Gondim; Gul, Sheraz; Kuzikov, Maria; Ellinger, Bernhard; Borsari, Chiara; Costi, Maria Paola; Bolognesi, Maria Laura; Belluti, Federica.
Afiliação
  • Piazzi, Lorna; Instituto Butantan. Laboratório de Farmacologia.
  • Mazzanti, Andrea; Instituto Butantan. Departamento de Microbiologia.
ChemMedChem ; 13(7): p. 678-683, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15264
Biblioteca responsável: BR78.1
Localização: BR78.1
ABSTRACT
Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC50 values of 1.8 and 1.9gmL(-1) against T.cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead.
Texto completo: Disponível Coleções: Bases de dados nacionais / Brasil Base de dados: Sec. Est. Saúde SP / SESSP-IBPROD Idioma: Inglês Revista: ChemMedChem Ano de publicação: 2018 Tipo de documento: Artigo
Texto completo: Disponível Coleções: Bases de dados nacionais / Brasil Base de dados: Sec. Est. Saúde SP / SESSP-IBPROD Idioma: Inglês Revista: ChemMedChem Ano de publicação: 2018 Tipo de documento: Artigo
...