Your browser doesn't support javascript.
loading
Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop
Gigascience ; 8(12): 1–18, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17279
Biblioteca responsável: BR78.1
Localização: BR78.1
ABSTRACT

Background:

Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10–13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing.

Results:

Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2–6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ~3.8–4.6 million years ago and reveals single-nucleotide variants that may underlie their differences.

Conclusions:

This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Texto completo: Disponível Coleções: Bases de dados nacionais / Brasil Base de dados: Sec. Est. Saúde SP / SESSP-IBPROD Idioma: Inglês Revista: Gigascience Ano de publicação: 2019 Tipo de documento: Artigo
Texto completo: Disponível Coleções: Bases de dados nacionais / Brasil Base de dados: Sec. Est. Saúde SP / SESSP-IBPROD Idioma: Inglês Revista: Gigascience Ano de publicação: 2019 Tipo de documento: Artigo
...