Your browser doesn't support javascript.
loading
EPR spectrum of the Y@C82 metallofullerene isolated in solid argon matrix: hyperfine structure from EPR spectroscopy and relativistic DFT calculations.
Phys Chem Chem Phys ; 12(31): 8863-9, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20535405
ABSTRACT
The EPR spectrum of the Y@C(82) molecules isolated in solid argon matrix was recorded for the first time at a temperature of 5 K. The isotropic hyperfine coupling constant (hfcc) A(iso) = 0.12 +/- 0.02 mT on the nucleus (89)Y as derived from the EPR spectrum is found in more than two times greater than that obtained in previous EPR measurements in liquid solutions. Comparison of the measured hfcc on a metal atom with that predicted by density-functional theory calculations (PBE/L22) indicate that relativistic method provides good agreement between experiment in solid argon and theory. Analysis of the DFT calculated dipole-dipole hf-interaction tensor and electron spin distribution in the endometallofullerenes with encaged group 3 metal atoms Sc, Y and La has been performed. It shows that spin density on the scandium atom represents the Sc d(yz) orbital lying in the symmetry plane of the C(2v) fullerene isomer and interacting with two carbon atoms located in the para-position on the fullerene hexagon. In contrast, the configuration of electron spin density on the heavier atoms, Y and La, is associated with the hybridized orbital formed by interaction of the metal d(yz) and p(y) electronic orbitals.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Aspecto clínico: Predição / Prognóstico Idioma: Inglês Revista: Phys Chem Chem Phys Assunto da revista: Biofísica / Química Ano de publicação: 2010 Tipo de documento: Artigo País de afiliação: Federação Russa