Your browser doesn't support javascript.
loading
Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control.
Miller, Daniel J; Araújo, Paula A; Correia, Patricia B; Ramsey, Matthew M; Kruithof, Joop C; van Loosdrecht, Mark C M; Freeman, Benny D; Paul, Donald R; Whiteley, Marvin; Vrouwenvelder, Johannes S.
Afiliação
  • Miller DJ; Department of Chemical Engineering, The University of Texas at Austin, Center for Energy and Environmental Resources, 10100 Burnet Road, Austin, TX 78758, USA.
Water Res ; 46(12): 3737-53, 2012 Aug.
Article em En | MEDLINE | ID: mdl-22578432
ABSTRACT
Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine-g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were 1) to determine the effectiveness of polydopamine and polydopamine-g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine-g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine-g-poly(ethylene glycol) is not effective for biofouling control.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Polímeros / Incrustação Biológica / Indóis / Membranas Artificiais Limite: Animals Idioma: En Revista: Water Res Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Polímeros / Incrustação Biológica / Indóis / Membranas Artificiais Limite: Animals Idioma: En Revista: Water Res Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos