Your browser doesn't support javascript.
Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations.
J Phys Chem A ; 117(47): 12256-67, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24168210
Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics, and the first hydrolysis constants of Pu(3+), Pu(4+), PuO2(+), and PuO2(2+) ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO2(2+) species is coordinated to five aquo ligands while the pentavalent PuO2(+) complex is coordinated to four aquo ligands. The Pu(3+) and Pu(4+) ions are both coordinated to eight water molecules. The first hydrolysis constants obtained for Pu(3+) and PuO2(2+) are 6.65 and 5.70, respectively, all within 0.3 pH unit of the experimental values (6.90 and 5.50, respectively). The hydrolysis constant of Pu(4+), 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2(+), 9.51, supports the experimental results of Bennett et al. [Radiochim. Acta 1992, 56, 15]. A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: J Phys Chem A Assunto da revista: Química Ano de publicação: 2013 Tipo de documento: Artigo País de afiliação: Estados Unidos