Your browser doesn't support javascript.
Dimeric 1,3-propanediaminetetraacetato lanthanides as the precursors of catalysts for the oxidative coupling of methane.
Dalton Trans; 43(23): 8690-7, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24769659
From neutral solutions, dimeric 1,3-propanediaminetetraacetato lanthanides (NH4)2[Ln2(1,3-pdta)2(H2O)4]·8H2O [Ln = La, 1; Ce, 2] and K2[Ln2(1,3-pdta)2(H2O)4]·11H2O [Ln = La, 3; Ce, 4] (1,3-H4pdta = 1,3-propanediaminetetraacetic acid, C11H18N2O8) were isolated in high yields. The reaction of excess strontium nitrate with 1 resulted in the formation of a two dimensional coordination polymer [La2(1,3-pdta)2(H2O)4]n·[Sr2(H2O)6]n·[La2(1,3-pdta)2(H2O)2]n·18nH2O (5) at 70 °C. Complexes 1-4 show a similar central molecular structure. The lanthanide ions are coordinated by two nitrogen atoms, four carboxy oxygen atoms from one 1,3-pdta ligand, two from the neighboring 1,3-pdta ligand forming a four-membered ring and two water molecules. Complex 5 has two kinds of dimeric lanthanum unit and extends into a 2D coordination polymer through strontium ions and bridged oxygen atoms, and forms a fourteen membered ring linked by oxygen atoms from carboxy groups of pdta. Complexes 1-4 are soluble in water. The (13)C{(1)H} NMR experiments for complex 1 were tested in solution. Thermal products from 1 and 5 show good catalytic activities towards the oxidative coupling reaction of methane (OCM). The conversion of methane and selectivity to C2 reached 29.7% and 51.7% at 750 °C for the product of 5. From TGA, XRD and SEM analyses, the thermal products from 1 and 5 are rod- and poly-shaped, which are assigned as lanthanum oxocarbonate and a mixture of La2O3, SrCO3 and La2O2CO3 for 1 and 5, respectively. The precursor method is favorable for the formation of regular shaped mixed oxides.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Dalton Trans Assunto da revista: Química Ano de publicação: 2014 Tipo de documento: Artigo