Your browser doesn't support javascript.
Synthesis, crystal structures, and magnetic properties of cyanide-bridged W(V)Mn(III) anionic coordination polymers containing divalent cationic moieties: slow magnetic relaxations and spin crossover phenomenon.
Inorg Chem ; 53(19): 10437-42, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25248141
ABSTRACT
Two trimetallic coordination complexes were prepared by self-assembly of [W(CN)8](3-) and the Mn(III) Schiff base followed by the addition of a Zn(II) or Fe(II) cationic unit. The octacyanotungstate connects neighboring Mn(III) centers to form a one-dimensional chain. The anionic chain requires cationic units of Zn(II) or Fe(II) to maintain charge balance in the structure. The Zn-containing complex shows ferrimagnetic behavior originating from the antiparallel alignment of W(V) and Mn(III) spins within the chain, which leads to slow magnetic relaxation at low temperatures. For the Fe(II)-containing compound, Fe(II) moieties are integrated into the ferrimagnetic chains, altering their spin states depending on the temperature. It appears that the coexistence of high- and low-spin states in the low temperature regime is responsible for the slower and faster relaxations of the magnetization.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Inorg Chem Ano de publicação: 2014 Tipo de documento: Artigo