Your browser doesn't support javascript.
loading
Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat (Myotis lucifugus).
Burns, Lynne E; Frasier, Timothy R; Broders, Hugh G.
Afiliação
  • Burns LE; Department of Biology, Dalhousie University, Life Sciences Centre 1355 Oxford Street, Halifax, Nova Scotia, B3H 4J1, Canada.
  • Frasier TR; Department of Biology, Saint Mary's University 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada.
  • Broders HG; Department of Biology, Saint Mary's University 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada.
Ecol Evol ; 4(21): 4130-49, 2014 Nov.
Article em En | MEDLINE | ID: mdl-25505539
ABSTRACT
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white-nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292-bp region of the mitochondrial genome. Analyses of F ST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global F ST = 0.001, P < 0.05, Global ΦST = 0.045, P < 0.01, STRUCTURE K = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male-biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá