Your browser doesn't support javascript.
loading
High-yield synthesis and optical properties of g-C3N4.
Yuan, Yanwen; Zhang, Lulu; Xing, Jun; Utama, M Iqbal Bakti; Lu, Xin; Du, Kezhao; Li, Yongmei; Hu, Xiao; Wang, Shijie; Genç, Aziz; Dunin-Borkowski, Rafal; Arbiol, Jordi; Xiong, Qihua.
Afiliação
  • Yuan Y; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. Qihua@ntu.edu.sg.
Nanoscale ; 7(29): 12343-50, 2015 Aug 07.
Article em En | MEDLINE | ID: mdl-26152840
ABSTRACT
Graphitic carbon nitride (g-C3N4), a metal-free semiconductor with a band gap of 2.7 eV, has received considerable attention owing to its fascinating photocatalytic performances under visible-light. g-C3N4 exhibits high thermal and chemical stability and non-toxicity such that it has been considered as the most promising photocatalyst for environmental improvement and energy conservation. Hence, it is of great importance to obtain high-quality g-C3N4 and gain a clear understanding of its optical properties. Herein, we report a high-yield synthesis of g-C3N4 products via heating of high vacuum-sealed melamine powder in an ampoule at temperatures between 450 and 650 °C. Using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the chemical composition and crystallization of the as-produced g-C3N4 are demonstrated. A systematic optical study of g-C3N4 is carried out with several approaches. The optical phonon behavior of g-C3N4 is revealed by infrared and Raman spectroscopy, and the emission properties of g-C3N4 are investigated using photoluminescence (PL) spectroscopy, while the photocatalytic properties are explored by the photodegradation experiment.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Singapura

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Singapura