Your browser doesn't support javascript.
Dipolar SAMs Reduce Charge Carrier Injection Barriers in n-Channel Organic Field Effect Transistors.
Langmuir ; 31(37): 10303-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26315142
ABSTRACT
In this work we examine small conjugated molecules bearing a thiol headgroup as self assembled monolayers (SAM). Functional groups in the SAM-active molecule shift the work function of gold to n-channel semiconductor regimes and improve the wettability of the surface. We examine the effect of the presence of methylene linkers on the orientation of the molecule within the SAM. 3,4,5-Trimethoxythiophenol (TMP-SH) and 3,4,5-trimethoxybenzylthiol (TMP-CH2-SH) were first subjected to computational analysis, predicting work function shifts of -430 and -310 meV. Contact angle measurements show an increase in the wetting envelope compared to that of pristine gold. Infrared (IR) measurements show tilt angles of 22 and 63°, with the methylene-linked molecule (TMP-CH2-SH) attaining a flatter orientation. The actual work function shift as measured with photoemission spectroscopy (XPS/UPS) is even larger, -600 and -430 meV, respectively. The contact resistance between gold electrodes and poly[N,N'-bis(2-octyldodecyl)-naphthalene-1,45,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (Polyera Aktive Ink, N2200) in n-type OFETs is demonstrated to decrease by 3 orders of magnitude due to the use of TMP-SH and TMP-CH2-SH. The effective mobility was enhanced by two orders of magnitude, significantly decreasing the contact resistance to match the mobilities reported for N2200 with optimized electrodes.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Aspecto clínico: Predição / Prognóstico Idioma: Inglês Revista: Langmuir Assunto da revista: Química Ano de publicação: 2015 Tipo de documento: Artigo País de afiliação: Alemanha