Your browser doesn't support javascript.
Double-Well Ultracold-Fermions Computational Microscopy: Wave-Function Anatomy of Attractive-Pairing and Wigner-Molecule Entanglement and Natural Orbitals.
Nano Lett ; 15(10): 7105-11, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352520
"Bottom-up" approaches to the many-body physics of fermions have recently demonstrated precise number and site-resolved preparations with tunability of interparticle interactions in single-well, SW, and double-well, DW, nanoscale confinements created by manipulating ultracold fermionic atoms with optical tweezers. These experiments emulate an analogue-simulator mapping onto the requisite microscopic Hamiltonian, approaching realization of Feynmans' vision of quantum simulators that "will do exactly the same as nature". Here we report on exact benchmark configuration-interaction computational microscopy solutions of the Hamiltonian, uncovering the spectral evolution, wave function anatomy, and entanglement properties of the interacting fermions in the entire parameter range, including crossover from an SW to a DW confinement and a controllable energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nanoclustered and condensed-matter phases and ultracold-atoms quantum information.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: Nano Lett Ano de publicação: 2015 Tipo de documento: Artigo País de afiliação: Estados Unidos