Your browser doesn't support javascript.
Unraveling the Multiple Effects Originating the Increased Oxidative Photoactivity of {001}-Facet Enriched Anatase TiO2.
ACS Appl Mater Interfaces ; 8(15): 9745-54, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27019104
ABSTRACT
Crystal shape control on a series of anatase photocatalysts was achieved by varying the amount of HF employed as a capping agent in their hydrothermal synthesis. A systematic comparison between their physicochemical properties, determined by several complementary surface and bulk techniques before and after thermal treatment at 500 °C, allowed one to discern the influence of the relative amount of exposed {001} crystal facets among a series of effects simultaneously affecting their oxidative photocatalytic activity. The results of both formic acid and terephthalic acid photo-oxidation test reactions point to the primary role played by calcination in making {001} facets effectively photoactive. Annealing not only removes most of the residual fluorine capping agent from the photocatalyst surface, thus favoring substrate adsorption, but also produces morphological modifications to a crystal packing that makes accessible a larger portion of surface {001} facets due to the unpiling of platelike crystals. The photocatalyst bearing the highest amount of exposed {001} facets (60%) shows the highest photoactivity in both the direct and the (•)OH-radical-mediated photocatalytic test reaction.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: ACS Appl Mater Interfaces Assunto da revista: Biotecnologia / Engenharia Biomédica Ano de publicação: 2016 Tipo de documento: Artigo País de afiliação: Itália