Your browser doesn't support javascript.
Novel Bake-in-Salt Method for the Synthesis of Mesoporous Mn3O4@C Networks with Superior Cycling Stability and Rate Performance.
ACS Appl Mater Interfaces ; 8(51): 35163-35171, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27977117
The commercial applications of Mn3O4 in lithium ion batteries (LIBs) are greatly restricted because of the low electrical conductivity and poor cycling stability at high current density. To overcome these drawbacks, mesoporous Mn3O4@C networks were designed and synthesized via an improved bake-in-salt method using NaCl as the assistant salt, and without the protection of inert gas. The added NaCl plays a versatile role during the synthetic process, including the heat conducting medium, removable hard template and protective layer. Because of the homogeneous distribution of Mn3O4 nanoparticles within the carbon matrix, the as-prepared Mn3O4@C networks show excellent cycling stability in LIBs. After cycling for 950 times at a current density of 1 A g-1, the discharge capacity of the as-prepared Mn3O4@C networks is determined to be 754.4 mA h g-1, showing superior cycling stability as compared to its counterparts. The valuable and promising method, simple synthetic procedure and excellent cycling stability of the as-prepared Mn3O4@C networks makes it a promising candidate as the potential anode material for LIBs.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: ACS Appl Mater Interfaces Assunto da revista: Biotecnologia / Engenharia Biomédica Ano de publicação: 2016 Tipo de documento: Artigo País de afiliação: China