Your browser doesn't support javascript.
ABSTRACT
Most large molecules are chiral in their structure they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: J Phys Chem Lett Ano de publicação: 2017 Tipo de documento: Artigo País de afiliação: Alemanha