Your browser doesn't support javascript.
Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications.
ACS Nano ; 12(5): 4727-4735, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29726674
Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Idioma: Inglês Revista: ACS Nano Ano de publicação: 2018 Tipo de documento: Artigo País de afiliação: Índia