Your browser doesn't support javascript.
loading
A Bayesian hierarchical model for mortality data from cluster-sampling household surveys in humanitarian crises.
Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko.
Afiliação
  • Heudtlass P; Institut de Recherche Santé et Société (IRSS).
  • Guha-Sapir D; Centre for Research on the Epidemiology of Disasters (CRED), Université catholique de Louvain, Brussels, Belgium and.
  • Speybroeck N; Centre for Health Evaluation & Research (CEFAR), Associação Nacional das Farmácias (ANF), Lisbon, Portugal.
Int J Epidemiol ; 47(4): 1255-1263, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860332
ABSTRACT

Background:

The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys.

Methods:

We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced.

Results:

With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model.

Conclusions:

In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.
Assuntos
Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Assunto principal: Análise por Conglomerados / Mortalidade / Teorema de Bayes / Técnicas de Apoio para a Decisão / Emergências Limite: Humanos Idioma: Inglês Revista: Int J Epidemiol Ano de publicação: 2018 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Assunto principal: Análise por Conglomerados / Mortalidade / Teorema de Bayes / Técnicas de Apoio para a Decisão / Emergências Limite: Humanos Idioma: Inglês Revista: Int J Epidemiol Ano de publicação: 2018 Tipo de documento: Artigo