Your browser doesn't support javascript.
A viral protein identifying framework based on temporal convolutional network.
Math Biosci Eng ; 16(3): 1709-1717, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30947439
The interaction between viral proteins and small molecule compounds is the basis of drug design. Therefore, it is a fundamental challenge to identify viral proteins according to their amino acid sequences in the field of biopharmaceuticals. The traditional prediction methods su er from the data imbalance problem and take too long computation time. To this end, this paper proposes a deep learning framework for virus protein identifying. In the framework, we employ Temporal Convolutional Network(TCN) instead of Recurrent Neural Network(RNN) for feature extraction to improve computation e ciency. We also customize the cost-sensitive loss function of TCN and introduce the misclassification cost of training samples into the weight update of Gradient Boosting Decision Tree(GBDT) to address data imbalance problem. Experiment results show that our framework not only outperforms traditional data imbalance methods but also greatly reduces the computation time with slight performance enhancement.





Texto completo: Disponível Coleções: Bases de dados internacionais Base de dados: MEDLINE Assunto principal: Proteínas Virais / Produtos Biológicos / Biologia Computacional Tipo de estudo: Avaliação econômica em saúde Aspecto clínico: Predição / Prognóstico Limite: Humanos Idioma: Inglês Revista: Math Biosci Eng Ano de publicação: 2019 Tipo de documento: Artigo País de afiliação: China